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  Abstract— In this work we present a methodology for 
lesion detection in Magnetic Resonance Imaging (MRI).  Many 
physicians rely on brain images for the diagnosis of 
neuropathologies such as Multiple Sclerosis (MS). 
Unfortunately, in Mexico, not all public health institutions have 
access to commercial imaging software. For this reason, 
physicians are interested in the development of tools that could 
partially replace commercial software, for instance, for the 
detection of brain lesions. The proposed method uses the 
Simple Linear Iterative Clustering method (SLIC) in order to 
reduce the number of variables, followed by a Gauss Markov 
Measure Field (GMMF) model to perform the classification. In 
literature, these methods have demonstrated many advantages 
such as: computational efficiency, border preservation and 
accuracy. Results obtained with the proposed method are 
promising and confirm these benefits.  

Key words— Markov measure fields, Multiple sclerosis, 
MRI, Superpixels 
 

I.  INTRODUCTION 
 
 The human body is a complex organism whose function 
has been largely studied throughout history; with the brain 
being the organ that many people considers the most 
striking. Almost any corporal functions are governed by the 
brain; however, there are many brain-related phenomena 
that neuroscience is still unable to explain. Unfortunately, 
like many organs in the human body, the brain can suffer 
degenerative changes due to aging, diseases or injuries. 
Neurodegenerative diseases cause alterations not only in the 
lifestyle of the person affected but they may also affect the 
dynamic of the people with whom the patient interacts.  
 Multiple sclerosis (MS) is a neurodegenerative disease 
that affects the myelin sheath of the axons that insulates the 
electric impulse signals that are transmitted between neurons 
[1,2]. Some principal symptoms and signs are: weakness, 
depression, monocular blindness, dysphagia and ataxia. The 
symptomatology depends of the affected zone. To this day, 
physicians cannot fully explain under which conditions a 
person can acquire this disease. Usually, the diagnosis is 
based on the presence of some of these symptoms and 
confirmed by medical imaging techniques such as Magnetic 
Resonance Imaging (MRI) or a Computer Tomography [3]. 
MS is the second neurodegenerative disease in incidence 
rate in young adults (20 to 40 years old), with epilepsy being 
the first. This means that these diseases affect many people 
during their most productive phase. MS produces lesions in 
the white matter which appear as hyper-intense spots in a T2 
MRI. The number and size of these spots allow the 
physician to diagnose and follow the evolution of the 
disease. However, detecting, counting and measuring these 

regions is a time-consuming task. For this reason, it is 
interesting to develop automated methods for the 
segmentation of MS lesions. 
 In this paper, an algorithm is proposed for the 
segmentation of MS lesions in MRI images. The algorithm 
is based on segmentation in superpixels followed by a 
classification stage using Markov Random Fields. The 
methodology is presented in Section II, followed by 
preliminary results in Section III. Finally, some conclusions 
are presented in Section IV. 
 

II.  METHODOLOGY 
 
 The proposed method is based on performing an over-
segmentation in superpixels using the Simple Linear 
Iterative Clustering (SLIC) algorithm [4], and then 
classifying each superpixel using a Gauss Markov Measure 
Field model [7]. This methodology is applied in two stages: 
in the first stage, the goal is to segment the whole brain in 
order to remove the skull and other structures. In the second 
stage, segmentation is applied only to the brain region to 
detect the MS lesions. Figure 1 shows the main steps of the 
process and the details are described below. 
 
A.  Oversegmentation in superpixels 
 

Many image segmentation algorithms attempt to assign 
a class label to each pixel, depending on its characteristics 
(intensity, color, etc.) and, possibly, those of its neighbors. 
Recently, it has been proposed to group similar pixels in 
spatially-compact clusters so that all pixels in a cluster can 
be treated as one single super-pixel [4-6]. Such methods can 
often reduce the number of unknown variables (e.g., class 
labels) that must be computed for certain tasks. Another 
advantage of using these methods is that super-pixels aim to 
preserve borders in the images. 

In the proposed method, a popular method for super-
pixel clustering, called SLIC, is applied [4]. This method is 
based on the K-means algorithm and merges pixels in 
clusters using a measure that combines distance and 
intensity. The main advantage of SLIC, in comparison with 
K-means, is that the search space is reduced, significantly 
decreasing the execution time.  
 The algorithm works as follows: let 𝐼𝐼(𝑟𝑟) be an image 
defined over a lattice 𝐿𝐿 (that is, 𝑟𝑟 ∈ 𝐿𝐿) and 𝐾𝐾 the desired 
number of super-pixels into which the input image will be 
segmented. Each super-pixel will be denoted by 𝑆𝑆𝑘𝑘 =
[𝐶𝐶𝑘𝑘, 𝐷𝐷𝑘𝑘], for 𝑘𝑘 = 1,… , 𝐾𝐾, where 𝐶𝐶𝑘𝑘 is the average intensity 
of the super-pixel and 𝐷𝐷𝑘𝑘 = [𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘] ∈ ℝ2 is its geometric 
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center (note that 𝐷𝐷𝑘𝑘 does not necessarily belong to 𝐿𝐿). In the 
case of MRI images, one may assume that 𝐶𝐶𝑘𝑘 is a real 
number. Cluster centers are initialized in a regular 
hexagonal grid in 𝐿𝐿, and their average intensities 𝐶𝐶𝑘𝑘 are 
initialized as the pixel intensity at 𝐷𝐷𝑘𝑘. For each super-pixel, 
a square neighborhood of size 2𝑀𝑀 × 2𝑀𝑀, with 𝑀𝑀 = √|𝐿𝐿|/𝐾𝐾, 
and centered at 𝐷𝐷𝑘𝑘 is defined in order to reduce the search 
space of the K-means method; that is, only pixels within the 
neighborhood of a given super-pixel can be assigned to it. 
Each pixel 𝑟𝑟 ∈ 𝐿𝐿 will be assigned to the neighboring super-
pixel that minimizes the combined distance 
 

𝛿𝛿𝑘𝑘(𝑟𝑟) = √𝑑𝑑𝑐𝑐(𝑟𝑟, 𝑘𝑘) + 𝛾𝛾𝑑𝑑𝑒𝑒(𝑟𝑟, 𝑘𝑘),    (1) 
where  

𝑑𝑑𝑐𝑐(𝑟𝑟, 𝑘𝑘) = 1
𝑚𝑚2  ‖𝐼𝐼(𝑟𝑟) − 𝐶𝐶𝑘𝑘‖2    (2) 

 
measures the difference in intensities, 

 
𝑑𝑑𝑒𝑒(𝑟𝑟, 𝑘𝑘) = 1

𝑀𝑀2 ‖𝑟𝑟 − 𝐷𝐷𝑘𝑘‖2     (3) 
 
measures the spatial distance and 𝑚𝑚 is the dynamic range of 
the data and 𝛾𝛾 is a hyperparameter that weights the 
importance between terms. 

Once each pixel has been assigned to a cluster, each 
cluster 𝐶𝐶𝑘𝑘 and 𝐷𝐷𝑘𝑘 is updated with the intensity and position 
averages of all pixels belonging to the cluster, and the 
process is iterated (re-assign pixels to clusters and so on). In 
our experience, the algorithm converges in 10 iterations. 
Figure 1b exemplifies the SLIC method applied to the image 
in Figure 1a with 𝐾𝐾 = 972 and 𝛾𝛾 = 0.1. Note how the 
borders of the super-pixels adhere to the borders between 
different structures. This algorithm also returns an image 
𝑙𝑙(𝑟𝑟)⃗⃗⃗⃗  which represents the index of the super-pixel to which 
pixel 𝑟𝑟 belongs. 
 
B. Super-pixel fragmentation and fusion 
 

Depending on the input image and the value of 𝛾𝛾, it is 
possible for SLIC to produce super-pixels that are spatially 
fragmented. These clusters have unconventional 
neighborhoods that may bias a classifier based on Markov 
fields. For this reason, a connected components algorithm 
[8] is used to re-label all the fragments as individual super-
pixels, effectively increasing the actual number of super-
pixels. On the other hand, to reduce the effects of noise, 
super-pixels whose area is smaller than 3% of the average 
area (given by �̅�𝐴 = |𝐿𝐿|/𝐾𝐾) are merged with the most similar 
neighboring cluster (in terms of average intensity), reducing 
the number of actual super-pixels. Figure 1c shows a 
zoomed region where small clusters are merged with 
neighboring super-pixels. In fusion process from 2014 
regions found with connected component process to 1285 
regions for all regions with area of 3% or less merged. 

C. Segmentation of the brain region 
 
 It is well known that MS lesions are located in the white 
matter. On the other hand, other structures in the MRI 
image, such as the skull, may also show high intensity 
values that may confound a classifier. For this reason it is 
useful to isolate the brain area from the MRI image. One 
way to achieve this segmentation is by classifying each 
super-pixel according to its average intensity and that of its 
neighbors. This can be done, for instance, by estimating the 
probability 𝑝𝑝𝑗𝑗(𝑘𝑘) that super-pixel 𝑆𝑆𝑘𝑘 belongs to class 𝑗𝑗, for 
each 𝑘𝑘 = 1, … , 𝐾𝐾 and 𝑗𝑗 = 1, … , 𝐶𝐶, using a Gauss Markov 
Measure Field (GMMF) model [7]. Under this model, the 
probabilities are obtained by minimizing, for each class 𝑗𝑗, 
the energy function 𝑈𝑈𝑗𝑗(𝑝𝑝𝑗𝑗) given by:  
 

𝑈𝑈(𝑝𝑝𝑗𝑗) = ∑ (𝑝𝑝𝑗𝑗(𝑘𝑘) − 𝑔𝑔𝑗𝑗(𝑘𝑘 ))
2

𝑆𝑆𝑘𝑘 
+

𝜆𝜆 ∑ ∑ (𝑝𝑝𝑗𝑗(𝑘𝑘) − 𝑝𝑝𝑗𝑗(𝑟𝑟))2

𝑟𝑟∈𝑁𝑁𝑘𝑘 𝑘𝑘 
.
 

 
 The first term in Eq. 5 represents the normalized 
likelihood between the 𝑘𝑘-th super-pixel and the 𝑗𝑗-th class 
given by 𝑔𝑔𝑗𝑗(𝑘𝑘) = 𝑣𝑣𝑗𝑗  (𝑘𝑘 )/ ∑ 𝑣𝑣𝑗𝑗  (𝑘𝑘 )𝑗𝑗 ,  where 𝑣𝑣𝑗𝑗  (𝑘𝑘 ) is the 
likelihood function. For instance, if each class has a 
Gaussian distribution with mean 𝜇𝜇𝑗𝑗 and variance 𝜎𝜎𝑗𝑗 2, the 
likelihood can be modeled as 
 

 𝑣𝑣𝑗𝑗(𝑘𝑘) = exp {− 𝜅𝜅‖𝐶𝐶𝑘𝑘 − 𝜇𝜇𝑗𝑗‖2/2𝜎𝜎𝑗𝑗
2},   (7) 

 
where 𝜅𝜅 is a hyper-parameter which controls the overall 
variance of all classes. 
 The second term in Eq. 5 is a regularization term that 
promotes the similarity between pairs of neighboring super-
pixels. For each super-pixel 𝑆𝑆𝑘𝑘, one can obtain the set of its 
neighboring super-pixels 𝑁𝑁𝑘𝑘 by inspecting the label image 
𝑙𝑙(𝑟𝑟)⃗⃗⃗⃗ . The hyper-parameter 𝜆𝜆 controls the balance between 
both terms of the energy function, and therefore determines 
the granularity of the results.  
 To minimize Eq. 5, one can calculate its derivative 
(with respect to each 𝑝𝑝𝑗𝑗(𝑘𝑘) and equal it to zero to obtain a 
linear equation system, which can solved iteratively by the 
Gauss–Seidel method. The equation which updates each 
𝑝𝑝𝑗𝑗(𝑘𝑘) is thus given by: 
 

𝑝𝑝𝑗𝑗(𝑘𝑘 ) = 𝑔𝑔𝑗𝑗(𝑘𝑘)+𝜆𝜆 ∑ 𝑝𝑝𝑗𝑗(𝑟𝑟)𝑟𝑟∈𝑁𝑁𝑘𝑘
1+𝜆𝜆|𝑁𝑁𝑘𝑘 |

.    (8) 

 
 A Gauss-Seidel iteration consists in updating 𝑝𝑝𝑗𝑗(𝑘𝑘) for 
all 𝑘𝑘 and all 𝑗𝑗. In our experience, the process converges in 5 
to 10 iterations. After convergence, the class 𝑐𝑐𝑘𝑘 assigned to 
the 𝑘𝑘-th super-pixel is obtained as 𝑐𝑐𝑘𝑘 = arg min𝑗𝑗{𝑝𝑝𝑗𝑗(𝑘𝑘)}. 



90 MEMORIAS XXXIX DEL CONGRESO NACIONAL DE INGENIERÍA BIOMÉDICA

 

 It is also possible to update the means 𝜇𝜇𝑗𝑗 and variances 
𝜎𝜎𝑗𝑗

2 for all classes according to the up-to-date classification 
after each Gauss-Seidel iteration. From the GMMF 
segmentation, a binary mask is obtained where the value for 
each pixel in the mask is 1 if the pixel belongs to a super-
pixel whose class corresponds to the brain region, or zero 
otherwise. Since there are other structures outside of the 
brain with similar gray levels, a connected components 
algorithm is applied to the mask to isolate the largest 
component, which corresponds to the brain. Finally, a hole-
filling algorithm [9] is used to obtain the full brain mask. 
The result of this process is shown in Figure 1e. 
 
D.  Lesion Segmentation 
  
 Once the brain region has been isolated, a linear tone 
transfer function is applied to the image so that the first and 
last percentiles of the pixels are saturated to the lowest (0) 
and highest (255) intensity values, respectively. This 
increases the uniformity of the intensity values in the 
lesions. The segmentation process (SLIC+fusion+GMMF)  
is applied once more to the intensity-adjusted brain region in 
order to detect the lesions in the brain (Figures 1f  and 1g); 
in this case, the resolution of the segmentation is increased 
by using a larger number super-pixels and a lower value for 
𝜆𝜆. Once again, a binary mask is obtained to indicate which 
pixels are part of a lesion (i.e., those that belong to the 
highest-intensity classes), and the connected components is 
applied to the mask to label each lesion and obtain their area 
and eccentricity. Finally, potential lesions are filtered 
according to their area and eccentricity in order to discard 
those regions that are either too small or too eccentric to be 
considered as true lesions. Figure 1h shows the final result 
where the reported lesions were marked in red.   
 

III.  PRELIMINARY RESULTS 
 
 Additional experiments were performed using one axial  
and one sagittal MRI images, and the results are shown in 
Figure 2. The parameters for both tests were the following: 
𝐾𝐾 = 1000 SLIC clusters, 𝛾𝛾 = 0.1, λ=0.1, 𝜅𝜅=0.1, and 
𝜇𝜇 = [5, 20, 30, 40, 50, 100] for the first stage (segmentation 
of the brain region). For the second stage (segmentation of 
the lesions), we used 𝐾𝐾 = 5000 SLIC clusters and 𝜇𝜇 =
[0, 70, 150, 200, 230, 250] for the axial image and 𝜇𝜇 =
[0, 170, 190, 210, 230, 250] for the sagittal image. The 
lesions correspond to classes 𝜇𝜇5 and 𝜇𝜇6 since some lesions 
are less bright than others. 

 
IV.  CONCLUSION 

 
 A methodology for the segmentation of Multiple 
Sclerosis lesions in MRI images was presented. The 
proposed method is based on super-pixels and Markov 
Measure Fields. The results achieved during the preliminary 

experiments are promising since most lesions can be found; 
however, some false positive structures were also found in 
regions that possibly correspond to gray matter. The 
proposed method is also computationally efficient and easy 
to implement. Future work will focus in a 3D 
implementation of the algorithm and an heuristic to estimate 
the initial class parameters. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: (a) Axial MRI input image, (b) lesion detection in the axial MRI 
image, (c) Sagittal MRI input image, (d) lesion detection in the sagittal 
MRI image. 
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Figure 1: Complete process for detection of lesions in the brain. (a) Sagittal MRI input image of 520x459 pixels, (b) image segmented in superpixels with γ=0.1 and 1000 desired clusters (resulting in 
𝐾𝐾 = 972 clusters), (c) Zoomed region where small clusters are shown (top), result of the fusion process where small regions were merged (bottom)., (d) Result of GMMF segmentation with 10 

iterations, 𝜆𝜆 = 0.1 and 𝑘𝑘 = 0.1, (e) Isolated brain area, (f) Segmentation of the intensity-adjusted brain region in 5000 super-pixels, resulting in 𝐾𝐾 = 5453 clusters after connected component were 
found, (g) GMMF segmentation of the brain region, (h) final result detecting 7 lesions in the white matter with eccentricity less that 0.9 and area of at least 80 pixels. 
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